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The author describes a computer method of calculating the temperature
at any point on a heat~exchanger tube wall.

The mathematically simplified, yet clumsy methods
of calculating the wall temperatures of heat-exchanger
tubes {1, 2] recommended for engineering purposes
make it necessary to solve this problem on a com-
puter.

Since there are no heat sources in the tube wall
and the temperature field is stationary, to determine
the field it is necessary to solve the Laplace equation
vi%* = 0 or in polar coordinates
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with the boundary conditions
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when the temperatures are determined at points on the
inner wall of the tube, and
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when the temperatures are determined at points on the
external wall of the tube.

Here, q is some known function of the angle iy mea-
sured around the periphery from the front point of the
tube.

The general solution of Eq. (1) is found in the form
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Expanding q(¥) in a Fourier series, we obtain
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The function g(), which characterizes the heat load
on the tube, can be calculated at any point; accordingly,
henceforth in referring to this function we will have
in mind a tabulated function. Since it is symmetrical
(even), solution (2) takes the form
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For boundary conditions (1a) and (1b) it is easy to
show that in (2a)
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Table 1

Values of the Series Sum ¥ as a Function of n

n 1 n
1 l 5.681359 5
2 ! 6.665318 6
3 6.574674 7
4 6.557871 8
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n
s ‘ . 1 s
n n
6.560868 | 9 6.561883
6.561757 10 6.561883
6.561975 11 6.561883
6.561912 12 6.561883
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Thus, in order to solve the problem it is necessary
to construct a table of values of q(¢) or, in other
words, the heat load rosette. To determine the heat
load at any point on the periphery of the tube we use
the equation [1]
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where the heat transfer coefficients oy and o vary
from point to point. The coefficient of heat transfer
from the wall to the medium «, is assumed to be inde-
pendent of ¥ (for a single-phase medium inside the
tube).

The heat transfer coefficients for different points
on the periphery of the tube are determined as follows.
In accordance with the recommendations given in
[1], the convective heat transfer coefficient ac is de-

termined from the equation

The radiative heat transfer coefficient oy is found
from the equation
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The calculation of the view factors @y and oy,
which usually involves clumsy geometrical construc-
tions unsuitable for computer operations, is replaced
by computation from the corresponding analytic ex-
pressions.

After the heat load rosette has been constructed,
to find t* from (2a) it is necessary to evaluate the in-
tegrals in (3) and (4). .

S’q(xp)dip does not

Whereas the evaluation of

0
present special difficulties and can be carried out by
ordinary numerical methods (for example, Simpson's

rule), the evaluation of Yq (p)cosnpdy requires

special consideration.

The fact is that evaluation of the integral over the
entire interval of a function strongly oscillating about
zero, for example, by Simpson's rule (even with auto-
matic step selection) or by Gauss's method, leads to a
serious loss of accuracy. This shortcoming can be
eliminated as follows.
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The entire interval of integration is divided into
segments with respect to zeros of the function cosny,

t*
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Relation between t*, °C, and the heat load qg, W/ m?,
at ¢ = 0: 1) experimental data; 2) calculated
curve.

i.e., the interval {0, 7] is divided into (n + 1) segments
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and the sum of the partial integrals
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In this case it is necessary to know the values of
the integrand at a large number of points on the inter-
val [0, 7].

In order to shorten the calculations it is desirable to
use on each segment [¢j-, $j] a parabolic approxima-
tion of the tabulated function, selecting the tabulated
values so that the parabola describes the behavior of
the function g(¥) precisely on the given segment. Then
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is evaluated directly.
Calculations on a "Ural-2" computer showed that
the accuracy of determination of the unknown tempera-

Table 2
Comparison of the Results of Temperature Calculations
Values of t
from 2] calc, deviation
o :
‘ |
tin fex in fex tip fex
0 143 72 145 75 +2 -+3
60 148 84 150 87 +2 —+3
120 156 106 156 106 0 0
180 157 109 157 107 0 —2
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tures is perfectly satisfactory. The accuracy of the
solution depends on two basic factors: the convergence
of the series from (2a) and correct construction of the
table of values of the functions q(%).
In order to illustrate the convergence of the series
we present values of the sum = for n varying from
n

1 to 12 in a typical calculation (Table 1).

Further increases in n have no effect on the sum.
As a rule, in evaluating the series sum it is sufficient
to take the first ten terms.

The second factor affecting the accuracy of the so-
lution is best analyzed by comparing the calculated
and experimental temperatures.

It is clear from Fig. 1 that the discrepancy between
the experimental* and calculated values does not ex-
ceed 4° C.

It is worthwhile comparing the solutions obtained
by the method proposed with solutions found by other
methods.

Thus, in [2] Schneider gives an example of the de-
termination of the wall temperatures of a heat ex-
changer by partitioning a hollow cylinder with a loga-
rithmic net and solving a clumsy system of equations
(pp- 207-209). The results are compared in Table 2.

On a computer the time required to determine the
wall temperatures at three points is about four min-
utes (at T = Ijp; T = Iex and r = (rex + rin)/2).

The short machine times and satisfactory accuracy
make it possible to use this program to investigate
numerous variants.

*The experimental data were obtained by Kh, Dimer-
chan on the steam superheater of the high-pressure
boiler at the LenGES-1 hydroelectric power station.
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NOTATION

t* = tyy — tiy, is the temperature difference between
some point on the tube wall and the medium flowing
through the tube; r is the variable radius indicating
the position of the point at which the temperature is
determined; oy, rj, are the external and inside radii
of tube; A is the thermal conductivity of metal; oy, e,
ayp are the coefficients of heat transfer from wall to
medium, by convection and by radiation, respectively;
s is the thickness of tube wall assumed given in the
first approximation and then subject to refinement as
a function of the temperature found; 8 = dex/(dex — 28)
(here dgy is the external diameter); 4 is the tempera~-
ture of the heating medium; ¢ is the coefficient of con-
tamination of external surface of tubes; t is the temper-
ature of the heated medium; k¢ is the tube variation
factor; a¢¢.m is the convective heat transfer coefficient
averaged over the periphery; ap, v, oe?-_ v are the radi-
ative heat transfer coefficients of volumes before and
after the heat exchanger; ¢y and @3 are the tube view
factors with respect to volumes before and after the
heat exchanger
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